DIAGNOSTICS MADE EASY

Access Control and Automation

Centurion Systems is a Company of the FAAC Simply Automatic Business Unit
HOW TO USE THIS GUIDE

The purpose of this guide is to equip users with the necessary skills for accurately diagnosing and resolving any technical challenges which may be encountered while working on Centurion access automation products.

The document is divided into different sections, each referring to a specific Centurion product or range of products, and each section is further divided into the different symptoms typical to the product in question.

Furthermore, diagnostic messages are categorised according to the stage of operation during which they are most likely to occur, be it during setup or normal operation. A category also exists for ‘Information Screens’.

The information screen or indication will in each case be presented first, followed by a list of possible symptoms associated with the product in question, possible cause(s) of the diagnostic message and, lastly, all the possible means of resolving the problem will be documented. This system provides the user with a simple means of cross-referencing when performing troubleshooting and diagnostic exercises.
Icons used in this guide

DIAGNOSTIC INDICATION

This is the audible or visual feedback provided by the operator.

Symptom

Refers to the physical behaviour of the product. For example, a gate not responding to a valid trigger would be a symptom.

LED output

The visual feedback provided by a system’s Status LED, which will flash at a specific frequency to indicate a fault condition.

Audible feedback

The feedback provided by the controller’s onboard buzzer.

Cause

The underlying reason for an operator behaving a certain way.

Solution(s)

The course of action needed to resolve a fault and return the device to normal operation.
CONTENTS

SLIDING GATE OPERATORS

D5-EVO/D5-EVO LOW-VOLTAGE, D10 AND D10 TURBO

Preliminary checks

Diagnostic messages during Setup
- Multiple Pulses on Origin
- ORG Not Found
- Setup Fail: No Endstops Found

Diagnostic messages during normal operation
- Aux. Overload
- Beams Active or Safety Beams Active
- Current Sensor Fault Reading Too High
- Current Sensor Fault Reading Too Low
- DOSS Fault
- DOSS Fault – Disconnected
- Drive Fault
- Motor Drive Failure
- Fuse Blown
- Drive Fault
- Gate Stalled
- IRB-C SAF Fail
- IRB-O SAF Fail
- Max Collisions
- No Limits Set
- Waiting for Co-processor
- Wait One Minute or Reset All Power

General Information Screens
- Ambush Alarm
- Break-in Alarm
- Holiday Lockout
Fault conditions during Setup
Gate moves to endstop, but does not complete Setup
Gate does not move at all

Fault conditions during normal operation
Gate does not move at all
Gate does not move at all or moves a short distance and stops
Gate does not close from the fully open position
Gate does not open from the fully closed position

Low Battery Voltage Condition

Wiring Diagrams

Product Quick Selection Guides

V-SERIES RANGE OF SWING GATE OPERATORS
VECTOR2/VANTAGE/VERT-X

Preliminary checks

Diagnostic messages during Setup
Setup Fail: See manual

Diagnostic messages during normal operation
Gate Stalled
Max Collisions
No Limits Set
Resolving
Waiting for Co-processor
Wait one Minute or Reset ALL Power

General Information Screens
Ambush Alarm
Break In Alarm
Holiday Lock

Wiring diagrams

Product Quick Selection Guide
Preliminary checks

Diagnostic messages during Setup
 Setup Fail: No Endstops Found
 Setup Fail: Inconsistent Endstops

Diagnostic messages during normal operation
 Aux Overload
 Boom Stalled
 Current Sensor Fault Reading Too High
 Current Sensor Fault Reading Too Low
 DOSS Fault
 DOSS Disconnected
 Drive Fault
 Motor Drive Failure
 Loosen Spring
 Tighten Spring
 Max Collisions
 No Limits Set
 Waiting for Co-processor
 Wait One Minute or Reset All Power

General Information Screens
 Break In Alarm
 Holiday Lockout
 Presence Alarm

KEYPAD ACCESS CONTROL
SMARTGUARD/SMARTGUARDair
 Entering the correct access code does not activate the relay/device that the keypad is connected to
 Electric gate lock not being activated

Wiring diagrams

Commonly Used Keypad Menus
INTERCOM SYSTEMS
POLOPHONE

Lights off on Entry Panel page 71
Entry Panel howling when active page 71
Entry Panel relay not triggering when gate button pressed on Handset
Handset not ringing when called page 72
No speech when Handset if lifted page 73

Wiring diagram page 74

GSM DEVICES
G-ULTRA GSM MODULE

Missed Call not activating one or both of the outputs page 76
When giving the module a Missed Call, Voicemail or a busy tone is heard
When giving the module a Missed Call, the relay activates and then the call goes to Voicemail
G-ULTRA not synchronising via G-WEB page 77

Product Quick Selection Guide page 78

Wiring diagram page 79

GARAGE DOOR OPERATORS
SDO4

Preliminary Checks page 83
SDO4 does not function at all page 84

EXPLANATION OF INFORMATION SCREENS

Voltagess page 86
Speed page 86
Current / Collision Count and Lost page 87
Position Count page 88
Magnet Position page 88
PWM page 88
Operations/Power ups page 89
Drive, Fuse and Motor page 90
Serial Number and Firmware version page 90
Input Matrix page 91
Remote Control Information page 92
SECTOR II Spring tension screen page 92

WiZo-Link wiring diagram page 93

Various wiring diagrams page 97
D-Series Operators

The D-Series range of operators, which includes the D5-Evo/D5-Evo Low-Voltage, D10 and D10 Turbo, gives useful feedback of fault conditions via an intelligent controller and LCD display. As discussed in the introduction to this guide, the symptom will be presented first, after which all possible information screens associated with the symptom(s) in question will be given and can then be cross-referenced with the ‘Possible cause’ and ‘Solution’ sections.
PRELIMINARY CHECKS

The following is a list of standard checks to be performed prior to undertaking any of the advanced diagnostic exercises contained within this document.

In the event that any fault condition is experienced, systematically go through the list to ensure that all of the minimum site requirements are met.

1. Ensure that the following LEDs are illuminated at all times:
 a. Safety Open
 b. Safety Close
 c. Lck/Stp
2. Check that operator is engaged.
3. Check all drive connections into the controller, i.e. battery and motor wires.
4. Check that there is a tight fit of the battery leads onto the battery terminals.
5. Check that Mains Present icon is solid.
6. Check that the origin magnet on the gate passes as closely as possible to the sensor - approximately 13mm apart.

FIGURE 1
7. Check the charge rate of the battery without the battery connected:
 a. 13.8V for D5-Evo/D5-Evo Low-Voltage
 b. 27.6V for D10/D10 Turbo
8. Test battery voltage under load; should be no lower than:
 a. 11V DC for D5-Evo/D5-Evo Low-Voltage
 b. 22V DC for D10/D10 Turbo

Look at the date stamp on the battery and make sure that the battery is well within its usable life of three to four years from the date on the battery.

9. Check all visible fuses.
10. Check DOSS and sensor connections.
11. Push the gate open and closed manually and check that the gate is running freely and that there are no tight spots in the movement of the gate.
12. Check the state of the gate wheels, examining both the condition of the bearings and the wear on the rolling face of the wheel.
13. Check the condition of the gate rail and ensure that it is perfectly straight and not corrugated.
14. Check for excessive build-up of dirt on the gate rail which might affect its free movement, and ensure that there is no vegetation or anything else obstructing the movement of the gate.
15. Make sure that the rack mesh is within specification along the entire travel of the gate - the rack mustn’t press down onto the pinion at any point.
16. Check that the gate aligns properly with its closed catch bracket when closing.
17. Make sure that the gate is fitted with an adequate Endstop that will stop the full force of the gate when opening.
18. Make sure that the gate’s guide-rollers adequately support the gate in the upright position and allow free movement of the gate along its entire length of travel.
19. Check that the gearbox is securely mounted and properly aligned to the movement of the gate (i.e. parallel to the gate).
TYPICAL DIAGNOSTIC MESSAGES FOUND ON THE D-SERIES CONTROLLERS

DIAGNOSTIC MESSAGES DURING SETUP

Symptom: Unable to complete Gate Setup

Possible causes

The sensor is receiving dual pulses from the origin magnet due to one of the following causes:

- Sensor positioned too far from the origin magnet
- Sensor and origin magnet positioned at different heights
- Incorrect orientation of magnet inside enclosure
- More than one magnet on gate
- Incorrect orientation of origin magnet
- Magnetised item on rack
- Incorrect orientation of the electric motor is causing induction
- Missing pins on origin enclosure
- Faulty harness
- Faulty origin sensor

Solutions

- Ensure that the sensor is as close as possible to the origin magnet – ideally the gap should be approximately 13mm. Refer to Figure 1 on page 2
- Sensor and origin magnet should be positioned at the same height
- Ensure that there is only one magnet on the gate
- Ensure that there are no items such as metal bars on the rack that could have become magnetised
- Orientate the electrical motor so that the wires are facing away from the controller
- Replace faulty origin sensor
- Open sensor enclosure and correct orientation of internal magnet
Symptom: Unable to complete Gate Setup

Possible causes

The error indication signifies that the sensor is not receiving a valid pulse from the gate-mounted origin magnet, or the controller is not receiving a signal from the sensor:

- The distance is too great between the origin sensor and the magnet
- The magnet and sensor are mounted at different levels
- Incorrect orientation of magnet
- The gate is getting stuck at a certain point before the magnet has passed the sensor
- Faulty origin sensor

Solutions

- Check the information screen on page 65 – it should display the position of the magnet (left/right) when the magnet is passing the sensor
- Ensure that the magnet and sensor are mounted at the same level
- Ensure that there is an audible ‘click’ whenever the magnet passes the origin sensor
- Ensure that the arrow on the magnet is facing the operator – there should be a repelling action when the magnet is brought near the sensor
- Move the magnet closer to the origin sensor. Refer to Figure 1 on page 2
- Replace the origin sensor
Symptom: Unable to complete Gate Setup

Possible causes

- Mechanical Endstops have not been installed
- Oil in DOSS chamber
- DOSS faulty or disconnected
- Electric fence contact preventing gate from reaching fully closed position
- Faulty electrical motor

Solutions

- Install physical Endstops in order to induce the stall needed to stop the motor
- Ensure that the harness is connected on both the controller and DOSS side
- Check for evidence of oil on the encoder by following the procedure documented below: (D5-Evo/D5-Evo Low-Voltage only)
 - Remove the DOSS and carrier so that the encoder wheel is clearly visible
 - Disengage the gearbox
 - Place your finger on the wheel
 - Move the gate a metre or so in both directions
 - Check your finger for oil
- Place an endstop approximately 100mm before the fully closed position and perform setup procedure
- Disconnect the motor wires from the controller and place them directly on the battery terminals to check whether the motor runs. If not, replace the electric motor.
Solutions

- Ensure that Endstops are sturdy and do not move
- Ensure that gap between rack and pinion is approximately 3mm
- Check for missing teeth on rack
- Place an endstop approximately 100mm before the fully closed position and perform setup procedure

DIAGNOSTIC MESSAGES DURING NORMAL OPERATION

Symptom: Gate does not open/close. This error indication applies to D10 and D10 Turbo only

Audible feedback

- Five beeps periodically for 30 seconds
Possible causes

- The maximum current that should be drawn by a D10 controller is 300mA (momentarily); 200mA (continuous)
- This error indication is displayed in the event of excess current being drawn
- Too many auxiliary components connected to 12V auxiliary output
- One specific auxiliary device that is faulty, typically having a short circuit
- Charging voltage significantly higher than 28V DC due to faulty charger or controller

Solutions

- Ensure that the battery charging voltage is no higher than 28V DC. Refer to Appendix A on page 61 for a description of how to test battery and charging voltages
- Disconnect and reconnect auxiliary component one by one in order to isolate the problem

Symptom: Gate does not open/close

Audible feedback

- One beep periodically for 30 seconds

Possible causes

- Beam interrupted
- Beam test inadvertently enabled
- IR PE beams faulty, misaligned or disconnected
- Damaged Safe Common input
Symptom: Gate will only move for a very short distance before termination of operation

Audible feedback

- Five beeps periodically for 30 seconds

Possible causes

- Poor/intermittent motor wire connection
- Faulty electric motor
- Controller hardware problem

Solutions

- Check connection of motor wires to controller
- Replace green motor wire connector
- Replace faulty electric motor
- Replace faulty controller
Symptom: Gate does not open/close

Audible feedback
• Five beeps periodically for 30 seconds

Possible causes
• DOSS physically disconnected
• Poor connection on DOSS or controller side
• Faulty harness
• Faulty DOSS
• Faulty controller

Solutions
• Ensure that the DOSS is clipped firmly into its carrier and that the harness is plugged in on both the DOSS and controller side
• Check for bad connections
• Replace DOSS harness
• Replace DOSS unit
• Replace faulty controller

Symptom: Gate does not open/close

Audible feedback
• Five beeps periodically for 30 seconds
Possible causes

• Intermittent or loose connection between motor and controller
• The H-bridge on the controller is damaged, possibly a blown FET
• The electric motor is faulty or has been disconnected

Solutions

• Check drive connections
• Check that the MOTOR, FUSE and DRIVE cells are all ticked in the information screen. An ‘x’, question mark or anything other than a tick indicate a fault. In the case of a damaged H-bridge, the display will typically indicate the part of the bridge that is damaged (i.e. Q1Q3, Q2Q4, etc.). For an explanation of the information screens found on the D-Series range of controllers, refer to Appendix B on page 63
• Ensure that the electric motor terminals are connected to the controller
• Check the function of the electric motor by referring to the information screen described earlier, or test the motor by connecting the motor terminals straight onto the battery. If the motor does not run, the commutator is most probably faulty
• In the event of a Drive Fault, the controller must be repaired by an authorised workshop

Symptom: Gate does not open/close

Audible feedback

• Five beeps periodically for 30 seconds
Possible causes

- Intermittent or loose connection between motor and the 30A ATO motor fuse has been blown or removed
- Faulty controller

Solutions

- The MOTOR, FUSE and DRIVE cells should all be ticked in the information screen
- For an explanation of the different screens, please refer to Appendix B on page 63
- Check the continuity of the fuse with a multi-meter – set the meter to ‘ohms’ or audio output
- If the fuse keeps blowing if replaced, the controller is faulty and must be replaced

Symptom: Gate does not open/close, or gate runs a short distance and stops

Audible feedback

- Four beeps periodically for ten seconds

Possible causes

The error message will be displayed whenever no DOSS pulses are registered while the motor is supposed to be running

- The operator is encountering a fixed obstruction
- The operator is jammed into an Endstop
- The gearbox is disengaged (D5-Evo/D5-Evo only)
- Loose drive connection (battery or motor terminal)
- Oil in DOSS chamber
- Faulty DOSS
- Sticky motor brushes
Audible feedback

- Five beeps periodically for 30 seconds

Possible causes

- The Beam Test feature has been inadvertently activated
- The safety PE beam transmitter has been wired to normal common – as opposed to safe common – with the Beam Test enabled
- The incorrect operating profile for the region has been selected. The UL325 and CE profiles will always perform a beam test before allowing the gate to run
Audible feedback

Symptom: Gate does not open/close, or gate runs a short distance and stops

Possible causes

- The operator is encountering an obstruction and has reached the pre-set number of allowable collisions
- Gate rack resting on pinion
- Seized gate wheels
- The controller collision force is set too sensitively
- Number of allowable collisions set to a low value, e.g. 1

Solutions

- Ensure that the PE beams are correctly wired and that the connections are secure. Refer to the wiring diagrams on pages 70 and 71
- If not required, Disable the Beam Test feature under Menu 6: IR Beams
- Connect the transmitter negative to Safety Com
- Ensure that you select the correct profile for the region the operator is being installed in, e.g. ZA (Menu 10: General Settings)
- Check PE beam alignment
- Perform a Factory Reset operation, bridge Safety Open to Com or refit the PE beams if they have been disconnected
- Replace the PE beams
- Replace faulty controller
• Damaged encoder wheel
• Tight gearbox
• Oil on DOSS
• Faulty DOSS harness
• Loose drive connections
• Gearbox not fully engaged
• Faulty DOSS sensor
• Faulty electric motor

Solutions

• Ensure that the gate is running smoothly and that there is nothing physically obstructing the gate, e.g. dirt or stones on the rail, rack pressing down on pinion, bad rack joints, etc.
• There should be a 2 - 3mm gap between the rack and the pinion
• Increase the Collision Force (Menu 2: Safety)
• Increase maximum collisions value to a higher number, typically 4
• Check for evidence of oil on the encoder by following the procedure below: (D5-Evo/D5-Evo Low-Voltage only)
 • Remove the DOSS and carrier so that the encoder wheel is clearly visible
 • Disengage the gearbox
 • Place your finger on the wheel
 • Move the gate a metre or so in both directions
 • Check your finger for oil
 • Replace faulty DOSS harness
 • Check battery and motor terminal connections
 • Ensure that operator is fully engaged
 • Replace faulty DOSS sensor
 • Replace faulty electric motor
• Have the operator serviced by an authorised workshop
Symptom: Gate does not open/close

Audible feedback

• Three short beeps periodically for 30 seconds

Possible causes

• Poor connection between battery and controller
• The battery voltage is low
• The battery is faulty or disconnected
• Faulty controller

Solution

• Set the gate travel limits by accessing the Setting Limits menu (Menu 1: Setting Limits) and following the onscreen prompts
Solutions

- Ensure that the battery terminals are properly connected on both the controller and battery side
- Measure the battery voltage – it should be no lower than 11V DC for the D5-Evo or 22V DC for the D10/D10 Turbo when placed under load. Refer to Appendix A on page 61 for an explanation of how to accurately test battery voltage
- Check for corrosive build-up around the battery terminals. If there is corrosion, replace both the battery and terminals
- Replace the battery
- Ensure that the ‘Mains Present’ icon is solid
- Measure the charger’s output voltage. It should be about 14V for the D5-Evo/D5 Evo Low-Voltage and 27V for the D10/D10 Turbo
- Replace faulty controller

GENERAL INFORMATION SCREENS

Symptom: None

Audible feedback

- 4KHz tone for 30 seconds

Possible causes

- The IR PE beams have been interrupted for the pre-set period of time with the Ambush Alarm feature enabled
- Inadvertent activation of the Ambush Alarm feature
Possible causes

- The IR PE beams have been interrupted with the gate in the fully closed position
- Inadvertent activation of the Break-in Alarm feature

Symptom: None

Audible feedback

- 4KHz tone for 30 seconds

Possible causes

- The IR PE beams have been interrupted with the gate in the fully closed position
- Inadvertent activation of the Break-in Alarm feature

Solutions

- Clear any obstructions from the path of the PE beams
- If the lenses are unobstructed, check the wiring between the PE beams and the controller, as well as between the IRB receiver and transmitter
- Ensure that the PE beams are properly aligned
- If not required, disable the Break-in Alarm feature in Menu 6: IR Beams

Solutions

- Clear any obstructions from the path of the PE beams
- If the lenses are unobstructed, check the wiring between the PE beams and the controller, as well as between the IRB receiver and transmitter
- Ensure that the PE beams are properly aligned
- If not required, disable the Break-in Alarm feature in Menu 6: IR Beams
Symptom: Gate does not open from fully closed position

Audible feedback

• One beep periodically for 30 seconds

Possible cause

• The Holiday Lockout feature has been enabled

Solutions

• Ensure that the green Lck/Stp LED is illuminated
• Press the transmitter button or switching device that invoked Holiday Lockout Mode
• Bridge the Lck input to Com or reset the controller to factory defaults (Menu: General Settings)
• Check for any Auto-activations pertaining to Holiday Lockout. Refer to the Time-barring and Auto-activation matrix, a depiction of which is given in Appendix B, page 63
D2 Turbo/D2 Turbo Low-Voltage
The **D2 Turbo/D2 Turbo Low-Voltage** sliding gate operators for domestic gates are renowned for their supremely easy setup, incredibly user-friendly interface and click-together modular design.

Like all CENTSYS operators, the **D2 Turbo/D2 Turbo Low-Voltage** will give feedback should it encounter any errors in its operation, using a combination of the Status LED and the onboard buzzer to provide users with the information necessary to perform diagnostic exercises.
FAULT CONDITIONS DURING SETUP

Symptom: Gate moves to endstop, but does not complete setup

LED output: Continuous ‘flashing’ red LED

Possible causes

• The origin magnet is missing or incorrectly mounted
• Faulty origin sensor
• Poor connection between battery and controller
• The battery voltage is low or the battery is faulty or disconnected

Solutions

• Check that the magnet is still mounted on the gate and that the gap between the magnet and the sensor is minimal. Refer to Figure 1 on page 2
• Ensure that there is an audible ‘click’ whenever the magnet passes the origin sensor
• Ensure that the arrow on the magnet is facing the operator – there should be a repelling action when the magnet is brought near the sensor
• Ensure that the battery terminals are properly connected on both the controller and battery side
• Measure the battery voltage – it should be no lower than 11V DC when placed under load. Refer to page 27 for an explanation of how to accurately test battery voltage
• Check for corrosive build-up around the battery terminals; if there is corrosion replace both the battery and battery terminals.
• Replace the battery
• Measure the onboard charger’s output voltage. It should be about 14V DC with the battery disconnected
• Replace the motor module
Symptom: Gate does not move at all

LED output: Continuous ‘flashing’ red LED

Audible feedback/Buzzer output

• Five quick beeps continuously

Possible causes

• Poor connection between battery and controller
• The battery voltage is low or the battery is faulty or disconnected
• Poor connection between motor wires and controller
• Motor fuse blown
• DOSS physically disconnected
• Faulty controller
• Faulty motor and DOSS assembly

Solutions

• Ensure that the battery terminals are properly connected on both the controller and battery side
• Measure the battery voltage – it should be no lower than 11V DC when placed under load. Refer to page 27 for an explanation of how to accurately test battery voltage
• Check for corrosive build-up around the battery terminals; if there is corrosion replace both the battery and battery terminals
• Measure the onboard charger’s output voltage. It should be about 14V DC
• Replace blown fuse. If it blows again, replace the controller
• Disconnect the motor wires and reconnect, ensuring that the screws have been sufficiently tightened
• Ensure that the DOSS cable is securely connected on both the controller and motor assembly side
• Replace the battery
• Replace faulty controller
• Replace motor assembly
FAULT CONDITIONS DURING NORMAL OPERATION

Symptom: Gate does not move at all

Audible feedback/Buzzer output
• Five beeps

Possible causes
• Motor disconnected
• DOSS disconnected
• Faulty controller

Solutions
• Ensure that the DOSS cable is securely connected on both the controller and motor assembly side
• Ensure that the motor terminals are connected to the controller
• Replace faulty controller

Symptom: Gate does not move at all

Audible feedback/Buzzer output
• Three short beeps

Possible cause
• End-of-travel limits have not been established

Solution
• Set the gate limits as per the procedure documented in the installation manual
Symptom: Gate does not move at all or move a short distance and stops

Audible feedback/Buzzer output

• Three long beeps

Possible causes

• Poor connection between battery and controller
• The battery voltage is low or the battery is faulty or disconnected
• There is no mains power to the motor
• Faulty controller

Solutions

• Ensure that the battery terminals are properly connected on both the controller and battery side
• Measure the battery voltage – it should be no lower than 11V DC when placed under load. Refer to page 27 for an explanation of how to accurately test battery voltage
• Check for corrosive build-up around the battery terminals. If there is corrosion, replace both the battery and terminals
• Replace the battery
• Measure the onboard charger’s output voltage. It should be about 14V DC
• Ensure that the safety PE beams are in working order
• Replace controller

Symptom: Gate does not close from the fully open position

LED output: Green Safe CLS LED flashes rapidly

Audible feedback/Buzzer output

• Three short beeps
Possible causes

- Closing infrared gate safety beams incorrectly wired
- Closing beams faulty

Solutions

- Ensure that the beam transmitter negative has been connected to Safe Com and not to Com
- Ensure that the beam receiver relay Com has been connected to Safe Com (Centurion Photon beams only) (Refer to D2 Turbo manual)
- Replace faulty infrared beams

Symptom: Gate does not open from the fully closed position

Audible feedback/Buzzer output

- One beep every two seconds

Possible causes

- Closing infrared gate safety beams interrupted
- Closing infrared safety beams faulty, misaligned or disconnected
- Damaged Safe Common input

Solutions

- Ensure that no people or objects are in the path of the beam
- Ensure that the Safety Open and Safety Close LEDs are lit – if not, the inputs can be permanently bridged to Com, or the controller can be reset to factory defaults. Bridging the safety inputs will disable all safety features and poses a safety hazard!
- Ensure that the beams are in working order
- Replace faulty controller
Symptom: Gate does not open from the fully closed position

LED output (Green): Safe OPN LED flashes rapidly

Audible feedback/Buzzer output

• Three short beeps

Possible causes

• Opening infrared gate safety beams incorrectly wired
• Opening beams faulty

Solutions

• Ensure that the beam receiver relay Com has been connected to Safe Com (Centurion Photon beams only) (Refer to D2 Turbo manual)
• Replace faulty infrared PE beams

Audible feedback/Buzzer output

• One beep every two seconds

Possible causes

• Opening infrared gate safety beams interrupted
• Opening infrared safety beams faulty, misaligned or disconnected
• Damaged Safe Common input

Solutions

• Ensure that no people or objects are in the path of the beam
• Ensure that the Safety Open and Safety Close LEDs are illuminated – if not, the inputs can be permanently bridged to Com, or the controller can be reset to factory defaults. Bridging the safety inputs will disable all safety features and poses a safety hazard!
• Ensure that the beams are in working order
• Replace faulty controller
LOW BATTERY VOLTAGE CONDITION

Status light flashes three times - LCD indicates Battery-Low (on operators with LCD interfaces).

If the battery voltage is less than 10.5V DC under load (D10/D10 Turbo = 21V DC), the unit will not operate at all. For any other voltage, the battery could still be the cause of the problem. Check that the battery is being properly charged.

- Check the ‘Mains Present’ icon on the main diagnostic screen or scroll to the battery charger diagnostic screen and check the charging voltage – right-hand voltage.
- This should indicate approximately 14V (D10/D10 Turbo = 28V)
- Check that the mains power is switched on (measure between 90V and 240V AC on the mains connector)
- Check that the red LED on the side of the charger is illuminated
- Check the charger’s supply fuse
- Check that the white battery charger connector is making proper contact with the controller
- Check the condition of the battery leads, terminals and connectors. Look for and correct all loose connections and signs of corrosion
- The battery might be discharged. Measure the battery voltage with the charger connected; if the voltage is below 11V, then the battery is discharged. The number of cycles per hour may be excessive, thus discharging the battery
- The charger may be faulty. Disconnect the battery and measure the voltage on the battery leads. It must be between 13.6V and 13.8V (D10/D10 Turbo = 27.5V). If not, replace the charger
- The battery might be old, and might have to be replaced. If in doubt test as follows:
 - Check that the battery is charged, by ensuring that the battery voltage is above 13.5V (D10/D10 Turbo = 27.5V) with the charger connected. (If the battery is in a good condition it would probably pass the test without being fully charged)
 - Disconnect the charger from the battery
 - Remove the DC motor leads from the DC controller
 - Apply the DC motor leads directly to the battery, while measuring the battery voltage
 - It should not be less than 10.5V DC under load (D10/D10 Turbo = 21V DC under load)
Synchronising two D-Series gate operators

The image used is for illustrative purposes only. The actual controller may differ from this image.

Controller settings on Master

Safety

Controller settings on Slave

Autoclose
- Autoclose status: ON
- Autoclose timer: 0 Seconds

FIGURE 1
WIRING DIAGRAMS

Interlocking two D-Series operators

The image used is for illustrative purposes only. The actual controller may differ from this image.

Controller settings on both Master and Slave

Safety
External gate indication status

- Indicator output........ AUX IO
- Closed indication........ On
- Part close indication..... Off
- Closing indication........ Off
- Part open indication..... Off
- Opening indication........ Off
- Open indication............ Off
- Pedestrian indication..... Off
- Unknown indication...... Off

FIGURE 2
WIRING DIAGRAMS

Wiring of a Solar panel to D5-Evo

The image used is for illustrative purposes only. The actual controller may differ from this image.

Solar Panel

12V 0 - 30A regulator

Battery

Load

Panel

Bridging

This scenario may change in future through firmware upgrades. In order to silence the buzzer on the controller from warning that there is no mains power present please bridge the controller’s charger terminals with Aux 12V Out and Com.

To do this follow these steps:

• Remove all power form the operator.
• Cut the charger wires (A) from where they go into the charger (leaving them intact where they plug into the controller).
• Connect the red wire to the ‘AUX 12V OUT’ terminal and connect the black wire to the ‘COM’ terminal.

This overrides the mains failure buzzer.

1. This scenario may change in future through firmware upgrades

FIGURE 3
WIRING DIAGRAMS

Wiring of one set of i5 infrared gate safety PE beams to two synchronised D-Series gate motors

The image used is for illustrative purposes only. The actual controller may differ from this image.

Please Note:
Ensure that beam test is disabled on both controllers.

Note:
Always wire the IRB Receiver into the master controller. For the controller synchronisation settings, please refer to page 79.
D10 Turbo maximum operating speed for corresponding gate mass

<table>
<thead>
<tr>
<th>Gate mass kg</th>
<th>Operator maximum running speed (m/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>50</td>
</tr>
<tr>
<td>300</td>
<td>42</td>
</tr>
<tr>
<td>400</td>
<td>36</td>
</tr>
<tr>
<td>500</td>
<td>32</td>
</tr>
<tr>
<td>600</td>
<td>29</td>
</tr>
<tr>
<td>700</td>
<td>27</td>
</tr>
<tr>
<td>800</td>
<td>25</td>
</tr>
<tr>
<td>900</td>
<td>24</td>
</tr>
<tr>
<td>1000</td>
<td>23</td>
</tr>
</tbody>
</table>
Sliding Gate Operator Quick Selection Guide

<table>
<thead>
<tr>
<th>Technical Data</th>
<th>Domestic</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>12V DC</td>
<td>10V-240V AC 90V-240V AC 90V-240V AC 220V-240V AC</td>
</tr>
<tr>
<td>Motor voltage</td>
<td>12V DC</td>
<td>12V DC</td>
</tr>
<tr>
<td>Motor power supply</td>
<td>Battery-driven 800mA charger</td>
<td>Battery-driven 1.8A battery charger</td>
</tr>
<tr>
<td>Motor mass</td>
<td>2.5kg</td>
<td>2.0kg</td>
</tr>
<tr>
<td>Motor life</td>
<td>50,000 cycles</td>
<td>60,000 cycles</td>
</tr>
<tr>
<td>Maximum daily operations</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Gate speed at push force ≤ 5kgf</td>
<td>24mm/min</td>
<td>24mm/min</td>
</tr>
<tr>
<td>Gate speed at push force > 5kgf</td>
<td>22mm/min</td>
<td>22mm/min</td>
</tr>
<tr>
<td>Duty cycle - mains present</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Duty cycle - mains lost</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Maximum daily operations</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Remarks:
1. 90V-240V AC
2. 240V AC
3. Battery-driven typically using a 7Ah (5Ah D2 Turbo) battery and a charger (Battery can be upgraded for longer power failure autonomy - mounted separately)
4. AC motor drives via frequency inverter and operates off single phase power supply
5. Solar Power may also be used
6. Based on a 12V DC mains and not in direct sunlight
7. With a 10 year replacement interval of two years

Duty Cycle:
- **Standard Duty Cycle:** 80% per day
- **Sprint Duty Cycle:** 13.6A/min
- **Two for every third:** 8A/min
- **Every fourth:** 5A/min

Power Requirements:
- **Input Voltage:** 240V AC
- **Output Voltage:** 12V DC
- **Rated Current:** 1.8A

Power Supply Options:
- **AC:** 240V AC
- **DC:** 12V DC

Technical Specifications:
- **Input Voltage:** 10V-240V AC 90V-240V AC 220V-240V AC
- **Output Voltage:** 12V DC
- **Rated Current:** 1.8A

Performance Data:
- **Gate Speed:**
 - ≤ 5kgf: 24mm/min
 - > 5kgf: 22mm/min
- **Duty Cycle:**
 - Standard: 80%
 - Sprint: 13.6A/min
- **Power Consumption:**
 - 2000W
- **Motor Life:**
 - 50,000 cycles

Maintenance & Service:
- **Annual Service:**
 - Check for wear and tear
 - Replace batteries as necessary
- **Regular Inspection:**
 - Check for proper alignment
 - Clean and lubricate moving parts

Environmental Consideration:
- **Energy Efficiency:**
 - Designed for low energy consumption
- **Noise Level:**
 - Low noise operation
- **Safety Features:**
 - Overload protection
 - Anti-rollback system

Support & Assistance:
- **Technical Support:**
 - 24/7 customer service
 - Online troubleshooting tools
- **Warranty:**
 - 10 years parts warranty
 - 1 year labor warranty

Conclusion:
- The Sliding Gate Operator Quick Selection Guide is designed to provide a comprehensive overview of the key features, specifications, and maintenance requirements for Sliding Gate Operators. By following the guidelines and recommendations provided, users can ensure optimal performance and longevity of their gate systems.
The V-Series range – consisting of the VECTOR2, VERT-X and VANTAGE – is a range of robust, reliable and feature-rich swing gate operators. Like the D-Series operators, these controllers boast user-friendly LCD interfaces with comprehensive onboard diagnostics for easy fault-finding.
PRELIMINARY CHECKS

The following is a list of standard checks to be performed prior to undertaking any of the advanced diagnostic exercises contained within this document. In the event that any fault condition is experienced, systematically go through the list to ensure that all the minimum site requirements are met.

1. Check all drive connections, i.e. battery and motor wires; check connections on the controller and any junction points between the actuator and the controller.
2. Test battery voltage under load; should be no lower than 11V DC. Refer to the battery test procedure on page 27.
3. Check all visible fuses.
4. Check that the Mains Present icon is solid.
5. Check DOSS and sensor connections to the controller.
6. Always check the operation of the safety beams. On the V-Series controllers, the beam LEDs mirror the state of the beam receiver relay. However, if the controller is in the default state, the LEDs may be off even though the controller tested the beams as ‘ok’. In the event that the gates do not open/close, ensure that the beams are functioning properly.
7. Check that actuator(s) is/are engaged.
8. Ensure that A and B dimensions of the rear mounting bracket are within specification.
9. Ensure that the gates are properly balanced.
10. Ensure that the hinges support the gate(s) adequately and allow free movement of the gate.
11. Check that there is no vegetation obstructing the movement of the gate.
12. An electric lock is to be fitted to gates wider than two meters.
13. Check that there is an adequate loop in the V-Series cable between the operator and the controller/junction box. The loop should have a radius of approximately 350mm.
14. **Ensure that both operators in a double leaf installation are the same version (e.g. v2 - VECTOR2)**
15. Ensure that the Wall Bracket is securely anchored.
16. Ensure that the actuator’s maximum stroke is being utilised.
17. Ensure that your gate and operator are equipped to deal with Wind Loading. Refer to Appendix D - the Wind Loading tables on page 95 for more detail.
18. Ensure that the correct operator is selected during setup.
TYPICAL DIAGNOSTIC MESSAGES FOUND ON THE V- SERIES CONTROLLERS

DIAGNOSTIC MESSAGES DURING SETUP

Symptom: Unable to complete gate setup

Possible causes

• Operator gearbox disengaged
• ‘DBL’ has been selected for a single-leaf installation
• Loose connection on the sensor terminals
• Installation dimensions are not according to specification
• Crimped or cut cables
• Intermittent connection between DOSS and harness
• The operators in a double leaf installation are different versions, resulting in excess current draw from one operator’s encoder sensor
• Incorrect operator has been selected
• DOSS failure
• Faulty controller
• Faulty actuator

Solutions

• Ensure that the gearbox is engaged by turning the actuator override key fully clockwise
• Ensure that ‘SGL’ is selected when prompted to select the number of leaves (if it is indeed a single-leaf installation)
• Ensure that all connections outside of the unit are secure and that the cable has not been crimped, cut or otherwise damaged
• Ensure that the harness is still securely plugged into the encoder and has not been pulled and yanked loose - as this connection is internal to the actuator, it is preferable to replace it; the operation of the encoder can be tested as follows:
• Set your multimeter to read DC voltage
• Place the negative lead on Common and the positive lead on the purple wire
• Slowly move the gate by hand (the actuator must be disengaged)
• Read the voltage between common (black) and the purple wire
• Pulses should be evident by the voltage moving between +0V and +4.5V
• Repeat for blue wire
• Ensure that both operators in a double leaf installation are the same version (e.g. v2 - VECTOR2)
• Ensure that the correct operator has been selected:
 • VC for VECTOR2
 • VN for VANTAGE
 • VX for VERT-X
• Replace faulty DOSS encoder/controller/actuator
• Replace controller
• Replace actuator

DIAGNOSTIC MESSAGES DURING NORMAL OPERATION

Symptom: Gate does not open/close, or gate runs a short distance and stops

Audible feedback
• Four beeps periodically for ten seconds

Possible causes
The error message will be displayed whenever no DOSS pulses are registered while the motor is supposed to be running.
• The operator is encountering a fixed obstruction
• Excessive Wind Loading
• The operator is jammed into an Endstop
• The gearbox is disengaged
• Loose drive and/or sensor connection (battery or motor terminal)
• The operators in a double-leaf installation are different versions, resulting in excess current draw from one operator’s encoder sensor
• Faulty DOSS

Solutions

• Ensure that nothing is physically hindering the trajectory of the gate(s)
• Ensure that the installation dimensions of the actuator’s rear mounting bracket are according to specification
• Engage operator by turning the key fully clockwise
• Check for loose drive and/or sensor connections on the controller or any junctions between the actuator and the controller
• Ensure that both operators in a double leaf installation are the same version (e.g. v2 - VECTOR2)
• Replace DOSS encoder. Repair work of this nature should be conducted by a qualified technician

Symptom: Gate does not open/close, or gate runs a short distance and stops

Audible feedback

• Four beeps periodically for ten seconds

Possible causes

• The operator is encountering an obstruction and has reached the pre-set number of allowable collisions
• The controller collision force is set too sensitively
• Number of allowable collisions set to a low value, e.g. 1
• Excessive wind loading
• Damaged encoder
• The operators in a double-leaf installation are different versions, resulting in excess current draw from one operator’s encoder sensor
• Dimensions for A, B, and C are incorrect
• Damaged encoder
• The operators in a double-leaf installation are different versions, resulting in excess current draw from one operator’s encoder sensor
• Dimensions for A, B, and C are incorrect
• Faulty DOSS harness. Repair work of this nature should be conducted by a qualified technician
• Loose drive and/or sensor connections
• Gearbox not fully engaged

Solutions

• Ensure that the gate is running smoothly and that there is nothing physically hindering the trajectory of the gate
• Increase the collision force (Menu 2: Safety)
• Increase maximum collisions value to a higher number, typically 4
• Ensure A, B, and C dimensions are correct
• Ensure that both operators in a double leaf installation are the same version (e.g. v2 - VECTOR2)
• Replace faulty DOSS harness. Repair work of this nature should be conducted by a qualified technician
• Check battery, motor terminal and sensor connections; check connections on the controller at any junction points between the operator and the controller
• Ensure that operator is fully engaged by turning the key fully clockwise
• Replace faulty DOSS encoder. Repair work of this nature should be conducted by a qualified technician
• As the encoder is mounted inside the actuator, it is preferable to replace the actuator

Symptom: Gate does not open/close

Audible feedback

• Three short beeps for five seconds
Possible cause

• The End-of-travel limits have not been established

Solution

• Set the Gate Travel Limits by accessing the Setting Limits Menu (Menu 1: Setting Limits) and following the onscreen prompts

Symptom: Gate moves a short distance and reverses direction

Possible causes

The error message denotes the fact that the operator is trying to resolve the perceived collision due to one or more of the following reasons:

• The gate is encountering an obstruction
• Excessive wind loading
• Actuator not fully engaged
• Sensor cables may not be connected, incorrectly connected, crimped or cut
• Gate leaf may be too long
• Short Ramp-up and Ramp-down distances
• Gate leaves have fallen out of synchronisation
• Dimensions for A, B, and C are incorrect

Solutions

• Ensure that nothing is physically hindering the trajectory of the gate
• Ensure that installation dimensions of the actuator’s rear mounting bracket are according to specification
• Engage actuator by turning the key fully clockwise
• Check all sensor wire connections and joints
Symptom: Gate does not open/close

Audible feedback

• Three short beeps for 30 seconds

Possible causes

• Poor connection between battery and controller
• The battery voltage is low or the battery is faulty or disconnected
• Faulty controller

Solutions

• Ensure that the battery terminals are properly connected
• Measure the battery voltage – it should be no lower than 11V DC when placed under load. Refer to Appendix A on page 61 for an explanation of how to accurately test battery voltage
• Check for corrosive build-up around the battery terminals. If there is corrosion, replace both the battery and terminals
• Replace the battery
• Ensure that the ‘Mains Present’ icon is solid
• Replace faulty controller

• Ensure that the length of the gate leaf is within specification
• Increase the Ramp-up and Ramp-down distances (Menu 5: Run Profile)
• Reset Gate Limits
GENERAL INFORMATION/ALERT SCREENS

Symptom: None

Audible feedback
- 4KHz until PE beams are cleared

Possible causes
- The IR beams have been interrupted for the pre-set period of time with the Ambush Alarm feature enabled
- Inadvertent activation of the Ambush Alarm feature

Solutions
- Clear any obstruction from the path of the beams
- If the lenses are unobstructed, check the wiring between the beams and the controller
- Refer to the wiring diagrams on pages 80 and 81, as well as between the IRB transmitter and receiver
- Ensure that the beams are properly aligned
- If not required, disable the Ambush Alarm feature in Menu 6: IR Beams

Symptom: None

Audible feedback
- 4KHz tone for 30 seconds
Possible causes

• The IR Beams have been interrupted with the gate in the fully closed position
• Inadverted activation of the Break-In Alarm feature

Solutions

• Clear any obstruction from the path of the beams
• If the lenses are unobstructed, check the wiring between the beams and the controller, as well as between the IRB receiver and transmitter
• Ensure that the beams are properly aligned
• If not required, disable the Break-In Alarm feature in Menu 6: IR Beams

Symptom: Gate does open from fully closed position

Audible feedback

• One beep periodically for 30 seconds

Possible cause

• The Holiday Lockout feature has been enabled

Solutions

• Ensure that the green LCK LED is illuminated
• Press the transmitter button or switching device that invoked Holiday Lockout Mode
• Bridge the LCK input to Com or reset the controller to factory defaults (Menu 10: General Settings)
WIRING DIAGRAMS

Wiring diagram for VECTOR2, VERT-X and VANTAGE master and slave motors

The image used is for illustrative purposes only. The actual controller may differ from this image.

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>THIN WIRES</th>
<th>THICK WIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECTOR2</td>
<td>AWG 17</td>
<td>AWG 12</td>
</tr>
<tr>
<td>VANTAGE</td>
<td>AWG 17</td>
<td>AWG 12</td>
</tr>
<tr>
<td>VERTX</td>
<td>AWG 17</td>
<td>AWG 12</td>
</tr>
</tbody>
</table>
WIRING DIAGRAMS

Wiring of V-Series controller to an electric gate lock

The image used is for illustrative purposes only. The actual controller may differ from this image.

FIGURE 6

Electric Striker Lock/ Maglock
WIND LOADING TABLES

Wind speeds for which VECTOR2 motor will still operate the gate

<table>
<thead>
<tr>
<th>Value of A or B dimensions once installed</th>
<th>Up to 1.5m</th>
<th>Up to 2m</th>
<th>Up to 2.5m</th>
<th>Up to 3m</th>
<th>Up to 3.5m</th>
<th>Up to 4m</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mm</td>
<td>94km/h</td>
<td>48km/h</td>
<td>44km/h</td>
<td>37km/h</td>
<td>41km/h</td>
<td>37km/h</td>
</tr>
<tr>
<td>140mm</td>
<td>119km/h</td>
<td>65km/h</td>
<td>57km/h</td>
<td>51km/h</td>
<td>60km/h</td>
<td>46km/h</td>
</tr>
<tr>
<td>180mm</td>
<td>138km/h</td>
<td>78km/h</td>
<td>67km/h</td>
<td>67km/h</td>
<td>60km/h</td>
<td>53km/h</td>
</tr>
<tr>
<td>220mm</td>
<td>167km/h</td>
<td>99km/h</td>
<td>84km/h</td>
<td>91km/h</td>
<td>91km/h</td>
<td>71km/h</td>
</tr>
<tr>
<td>260mm</td>
<td>186km/h</td>
<td>116km/h</td>
<td>108km/h</td>
<td>98km/h</td>
<td>98km/h</td>
<td>76km/h</td>
</tr>
<tr>
<td>300mm</td>
<td>205km/h</td>
<td>133km/h</td>
<td>116km/h</td>
<td>108km/h</td>
<td>108km/h</td>
<td>76km/h</td>
</tr>
<tr>
<td>340mm</td>
<td>224km/h</td>
<td>152km/h</td>
<td>135km/h</td>
<td>127km/h</td>
<td>127km/h</td>
<td>76km/h</td>
</tr>
</tbody>
</table>

For a 100% covered gate: (Fully clad gates, etc.) x 1.8m high

<table>
<thead>
<tr>
<th>Value of A or B dimensions once installed</th>
<th>Up to 1.5m</th>
<th>Up to 2m</th>
<th>Up to 2.5m</th>
<th>Up to 3m</th>
<th>Up to 3.5m</th>
<th>Up to 4m</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mm</td>
<td>100km/h</td>
<td>55km/h</td>
<td>48km/h</td>
<td>41km/h</td>
<td>45km/h</td>
<td>37km/h</td>
</tr>
<tr>
<td>140mm</td>
<td>129km/h</td>
<td>72km/h</td>
<td>63km/h</td>
<td>57km/h</td>
<td>66km/h</td>
<td>48km/h</td>
</tr>
<tr>
<td>180mm</td>
<td>148km/h</td>
<td>89km/h</td>
<td>80km/h</td>
<td>74km/h</td>
<td>74km/h</td>
<td>60km/h</td>
</tr>
<tr>
<td>220mm</td>
<td>167km/h</td>
<td>108km/h</td>
<td>100km/h</td>
<td>94km/h</td>
<td>94km/h</td>
<td>78km/h</td>
</tr>
<tr>
<td>260mm</td>
<td>186km/h</td>
<td>126km/h</td>
<td>118km/h</td>
<td>112km/h</td>
<td>112km/h</td>
<td>96km/h</td>
</tr>
<tr>
<td>300mm</td>
<td>205km/h</td>
<td>144km/h</td>
<td>136km/h</td>
<td>130km/h</td>
<td>130km/h</td>
<td>100km/h</td>
</tr>
<tr>
<td>340mm</td>
<td>224km/h</td>
<td>162km/h</td>
<td>154km/h</td>
<td>148km/h</td>
<td>148km/h</td>
<td>120km/h</td>
</tr>
</tbody>
</table>

An electric lock must be fitted. Refer to the VECTOR2 Installation Manual for installation details.
Wind speeds for which VERT-X, Vantage 400, and Vantage 500 motors will still operate the gate

<table>
<thead>
<tr>
<th>Maximum Allowable Coverage in Wind Speeds</th>
<th>Length (m)</th>
<th>Height (m)</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up to 1.5m</td>
<td>Up to 1.8m</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Up to 2m</td>
<td>Up to 1.8m</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Up to 2.5m</td>
<td>Up to 1.8m</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Up to 3m</td>
<td>Up to 1.8m</td>
<td>100%</td>
</tr>
</tbody>
</table>
Swing Gate Operator Quick Selection Guide (Part1)

Technical Data

<table>
<thead>
<tr>
<th>Domestic / Light-industrial</th>
<th>Domestic</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Type</td>
<td>Operator type</td>
<td>Input voltage</td>
</tr>
<tr>
<td>VECTOR2 500</td>
<td>Linear actuator</td>
<td>220V-240V AC</td>
</tr>
<tr>
<td>VECTOR2 400</td>
<td>Linear actuator</td>
<td>220V-240V AC</td>
</tr>
<tr>
<td>R3</td>
<td>Rotary arm</td>
<td>220V-240V AC</td>
</tr>
<tr>
<td>Maxi-mate</td>
<td>Rotary arm</td>
<td>220V-240V AC</td>
</tr>
<tr>
<td>Rotary arm</td>
<td>Linear actuator</td>
<td>90V-240V AC</td>
</tr>
<tr>
<td>Rotary arm</td>
<td>Linear actuator</td>
<td>90V-240V AC</td>
</tr>
<tr>
<td>Rotary arm</td>
<td>Linear actuator</td>
<td>90V-240V AC</td>
</tr>
</tbody>
</table>

1. Battery-driven typically using a 7Ah battery and a charger (Battery can be upgraded for longer power failure autonomy - mounted separately.)
2. Assumes a 90° opening gate
3. Based on a 25°C ambient and unit not in direct sunlight

Notes:
- Solar power may also be used
<table>
<thead>
<tr>
<th>Technical Data</th>
<th>Domestic</th>
<th>Domestic / Light-industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator type</td>
<td>VERT-X</td>
<td>VANTAGE 400</td>
</tr>
<tr>
<td></td>
<td>Linear actuator</td>
<td>Linear actuator</td>
</tr>
<tr>
<td>Input voltage</td>
<td>220V-240V AC</td>
<td>90V-240V AC, 90V-240V AC</td>
</tr>
<tr>
<td>Motor voltage</td>
<td>12V</td>
<td>12V</td>
</tr>
<tr>
<td>Motor power supply</td>
<td>Battery-driven - 1.8A charger</td>
<td>Battery-driven - 1.8A charger</td>
</tr>
<tr>
<td>Maximum gate leaf width for corresponding gate mass</td>
<td>2m - 335kg, 3m - 150kg</td>
<td>2m - 500kg, 3.5m - 260kg</td>
</tr>
<tr>
<td>Typical gate opening time</td>
<td>11 seconds</td>
<td>14 seconds</td>
</tr>
<tr>
<td>Maximum daily operations</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

1. Battery-driven typically using a 7Ah battery and a charger (Battery can be upgraded for longer power failure autonomy - mounted separately.
2. Assumes a 90° opening gate
3. Based on a 25°C ambient and unit not in direct sunlight

Solar power may also be used
The SECTOR II, while technically part of the D-Series range, has its own unique set of error codes and as such is discussed separately in this guide.
PRELIMINARY CHECKS

The following is a list of standard checks to be performed prior to undertaking any of the advanced diagnostic exercises contained within this document. In the event that any fault condition is experienced, systematically go through the list to ensure that all the minimum site requirements are met.

1. Ensure that the following LEDs are illuminated at all times:
 a. ILP
 b. Lck/Stp
2. Check all drive connections, i.e. battery and motor wires.
3. Test battery voltage under load, it should be no lower than 11V DC.
4. Check all visible fuses.
5. Ensure that the barrier is firmly bolted onto its plinth.
6. Ensure that the pole is firmly held by the pole coupler.
7. If a loop has been fitted – check for continuity.
 a. The impedance should be <5Ω.
8. Check DOSS connections.
9. Ensure that the orientation of the spring corresponds with the orientation of the boom pole (Refer to the SECTOR II installation manual for further information)
TYPICAL DIAGNOSTIC MESSAGES FOUND ON THE SECTOR II CONTROLLER

DIAGNOSTIC MESSAGES DURING SETUP

Symptom: Unable to complete barrier setup

Possible causes

- DOSS is faulty or disconnected
- The gearbox is slipping

Solutions

- Replace faulty DOSS or reconnect the unplugged connections
- Contact an authorised agent to service the gearbox
- Tighten the drive-arm or contact an authorised agent

Symptom: Unable to complete barrier setup

Possible cause

- One or both Endstops are moving
- The gearbox is slipping

Solution

- Use a Phillips screwdriver to sufficiently tighten the open and closed Endstops. They should not move at all when subjected to force
DIAGNOSTIC MESSAGES DURING NORMAL OPERATION

Symptom: Boom does not raise/lower, barrier runs a short distance and stops

Audible feedback
• Five beeps periodically for 30 seconds

Possible causes
This error indication is displayed in the event of excess current being drawn
• Incorrect spring orientation
• Incorrect spring tension
• Too many auxiliary components connected to 12V auxiliary output
• The maximum current that should be drawn by the SECTOR II traffic barrier controller is 3A (momentarily) or 1A (continuous)
• One specific auxiliary device that is faulty, typically having a short circuit
• Charging voltage significantly higher than 14V DC due to faulty charger or controller

Solutions
• Ensure that the orientation of the spring corresponds with the orientation of the boom pole. Refer to the SECTOR II manual for further details
• Check the spring balance by referring to the Spring Tension Diagnostic screen, and correct if necessary
• Ensure that the battery charging voltage is no higher than 14V DC. Refer to Appendix A on page 61 for a description of how to test battery and charging voltages
• Disconnect and reconnect auxiliary components one by one in order to isolate the problem
Symptom: Boom does not raise/lower, barrier runs a short distance and stops

Audible feedback

- Four beeps periodically for ten seconds

Possible causes

This error message will be displayed whenever no DOSS pulses are registered while the motor is supposed to be running

- The operator is encountering a fixed obstruction
- Loose drive connection (battery or motor terminal)
- Blown fuse
- DOSS unclipped from gearbox
- Faulty DOSS
- The gearbox is slipping
- The primary drive-arm is loose on the output shaft

Solutions

- Ensure that nothing is hindering the trajectory of the boom pole
- Ensure that drive connections are secure
- Check 30A ATO fuse
- Ensure that DOSS is firmly clipped into the gearbox
- Replace faulty DOSS
- Contact local authorised agent to service gearbox
- Tighten the primary drive-arm or contact local authorised agent
Symptom: Boom pole will only move for a very short distance before termination of operation

Audible feedback
• Five beeps periodically for 30 seconds

Possible cause
• Controller hardware problem

Solution
• Replace faulty controller

Symptom: Boom does not raise/lower

Audible feedback
• Five beeps periodically for 30 seconds

Possible causes
• DOSS physically disconnected
• Poor connection on DOSS or controller side
• Faulty harness
• Faulty DOSS
• Faulty controller
Solutions

- Ensure that the DOSS is clipped firmly into its carrier and that the harness is plugged in on both the DOSS and controller side
- Check for bad connections
- Replace DOSS harness
- Replace DOSS unit
- Replace faulty controller

Symptom: Boom does not raise/lower

Audible feedback

- Five beeps periodically for 30 seconds

Possible causes

- Loose drive connections
- Faulty electric motor
- The H-bridge on the controller is damaged, possibly a blown FET
- The electric motor is faulty or has been disconnected

Solutions

- Check drive connections (motor and battery) and secure if necessary
- Replace faulty electric motor
- Check that the MOTOR, FUSE and DRIVE cells are all ticked in the information screen. An ‘x’, question mark or anything other than a tick indicates a fault. In the case of a damaged H-bridge, the display will typically indicate the part of the bridge that is damaged (i.e. Q1Q3, Q2Q4, etc.). For an explanation of the diagnostic screens found on the D-Series range of controllers, refer to Appendix B on page 63
• In the event of a Drive Fault, the controller must be repaired by an authorised workshop
• Ensure that the electric motor terminals are connected to the controller
• Check the function of the electric motor by referring to the information screen described above, or test the motor by connecting the motor terminals straight onto the battery
• If the motor does not run, the commutator is most probably faulty

Symptom: Barrier may continue to operate but movement will be accompanied by audible error indication

Audible feedback

• Three beeps periodically while boom is moving

Possible cause

• The spring tension is incorrect; it is too loosely / tightly wound

Solution

• A handy information screen, including graphic representation, can be found by scrolling upwards on the controller. Refer to Appendix B, on page 63 for further information. This will show you exactly how many turns are needed and in which direction (i.e. clockwise or counter-clockwise)
Symptom: Barrier does not raise/lower or barrier runs a short distance and stops

Audible feedback

• Four beeps periodically for ten seconds

Possible causes

• The operator is encountering an obstruction and has reached the pre-set number of allowable collisions
• The controller collision force is set too sensitively
• Number of allowable collisions set to a low value, e.g. 1
• Faulty DOSS harness
• Incorrect spring tension
• Incorrect combination of spring, gearbox, and pole length
• Loose drive connections
• Faulty DOSS
• Faulty or disconnected electric motor

Solutions

• Ensure that nothing is physically hindering the trajectory of the boom
• Increase the Collision Force (Menu 2: Safety)
• Increase maximum collisions value to a higher number, typically 4
• Replace faulty DOSS harness
• Ensure the correct spring and gearbox is used for the current pole length in use
• Check battery and motor terminal connections
• Replace faulty DOSS
• Ensure that the blue and black motor wires are connected to the controller. If they are and the barrier still won’t operate, it might be necessary to replace the electric motor. Refer to the MOTOR information screen discussed in Appendix B on page 63 to determine whether the motor is read by the controller
• A handy information screen, including graphic representation, can be found by scrolling upwards on the controller. Refer to Appendix B, on page 63 for further information. This will show you exactly how many turns are needed and in which direction (i.e. clockwise or counter-clockwise).

Symptom: Boom does not raise/lower

Audible feedback
• Three short beeps for five seconds

Possible cause
• The End-of-travel limits have not been established

Solution
• Set the gate travel limits by accessing the Setting Limits menu (Menu1: Setting Limits) and following the onscreen prompts
Symptom: Boom does not raise/lower

Audible feedback

• Three beeps periodically for 30 seconds

Possible causes

• Poor connection between battery and controller
• The battery voltage is low or the battery is faulty or disconnected
• Faulty controller

Solutions

• Ensure that the battery terminals are properly connected
• Measure the battery voltage – it should be no lower than 11V DC when placed under load. Refer to Appendix A on page 61 for an explanation of how to accurately test battery voltage
• Check for corrosive build-up around the battery terminals. If there is corrosion, replace both the battery and terminals
• Replace the battery
• Ensure that the ‘Mains Present’ icon is solid
• Replace faulty controller
Symptom: None

Audible feedback
• 4KHz tone for 30 seconds

Possible causes
• The closing loop has been activated while the boom is lowered
• Inadvertent activation of the Break-in Alarm feature

Solutions
• Remove any metal objects from the closing loop
• Check the loop wiring and impedance (should typically be <5Ω)
• If not required, disable the Break-in Alarm feature in Menu 6: Loop Detector

Symptom: Boom does not raise from fully lowered position

Audible feedback
• One beep periodically for 30 seconds

Possible cause
• The Holiday Lockout feature has been enabled
Solutions

• Ensure that the green Lck LED is illuminated
• Press the transmitter button or switching device that invoked Holiday Lockout Mode
• Bridge the Lck input to Com or reset the controller to factory defaults (Menu 10: General Settings)
• Check for any Auto-activations pertaining to Holiday Lockout. Refer to the Time-barring and Auto-activation matrix, a depiction of which is given in Appendix B on page 63

Symptom: None

Audible feedback

• 4KHz tone until closing loop is cleared

Possible causes

• The closing loop has been activated for the time specified in Menu 6.5.1.2: Presence Time
• Inadvertent activation of the Presence Alarm feature

Solutions

• Remove any metal objects from the closing loop
• Check the loop wiring and impedance (should typically be <5Ω)
• If not required, disable the Presence Alarm feature in Menu 6: Loop Detector
The SMARTGUARD (hard-wired) and SMARTGUARDair (wireless) access control keypads provide diagnostic feedback via a collection of tri-colour LEDs on the face of the unit, as well as an onboard buzzer which will alert users to any errors in its operation.
Symptom: Entering the correct access code does not activate the relay/device that the keypad is connected to

LED output: Green LED illuminates

Possible causes

• The code has been programmed to activate Output 2 or 3 (SMARTGUARD)
• Device has not been paired to a CENTSYS code-hopping receiver (SMARTGUARDair)

Solutions

• Program the code to activate Output 1
 • Enter Programming Mode = * Master Code*
 • Select Add Menu = 1 #
 • Enter User Address = Address #
 • Enter Access Code = New access code #
 • Select Channel = Channel 1#
 • Enter Access limit = [Accesses] #
 • Exit Add menu = #
 • Exit Program Mode = #
• Pair the keypad with a CENTSYS code-hopping receiver (SMARTGUARDair)
 • Place the receiver into Learn Mode
 • Enter a valid access code on the SMARTGUARDair, followed by #. The SMARTGUARDair will now transmit for a short time, and will pair with the receiver
 • Exit Learn Mode on the receiver
 • Test the system by entering a valid access code, followed by #

Symptom: Entering the correct access code does not activate the relay/device that the keypad is connected to

LED output: Red LED illuminates
Possible causes

- The access code has not been learned into memory
- The access code was learned into memory with an access limit set

Solutions

- Learn the access code into memory:
 - Enter Program Mode = * Master Code*
 - Select Add Menu = 1 #
 - Enter User Address = Address #
 - Enter Access Code = New access code #
 - Select Channel = Channel #
 - Enter Access limit = [Accesses] #
 - Exit Add menu = #
 - Exit Program Mode = #

Symptom: Entering the correct access code does not activate the relay/device that the keypad is connected to

LED output: Red LED triple-flashes rapidly every four seconds. The tone of the onboard buzzer will also be different from its normal pitch when pressing keys

Possible cause

- Battery voltage low (SMARTGUARDair)

Solutions

- Replace batteries
Symptom: Entering the correct access code does not activate the relay/device that the keypad is connected to

LED output: Green and red LEDs flash in sequence

Possible cause

- Code has been incorrectly entered three times
- Inadvertently changed access code when editing settings

Solutions

- Make sure that the code entered is correct
- Learn the code again

Symptom: Electric gate lock not being activated

Possible cause

- Incorrect wiring

Solution

- Refer to wiring diagram in installation manual
WIRING DIAGRAMS

Wiring diagram of SMARTGUARD keypad to a striker lock

The image used is for illustrative purposes only. The actual controller may differ from this image.

From external 12V - 24V DC/AC power supply

FIGURE 7
WIRING DIAGRAMS

Wiring diagram of SMARTGUARD keypad to a magnetic lock

The image used is for illustrative purposes only. The actual controller may differ from this image.

From external 12V - 24V DC/AC power supply

FIGURE 8
COMMONLY USED KEYPAD MENUS

Adding a code
Enter the following keystrokes:
1. Enter program mode *Master Code*
2. Select add menu 1#
3. Enter user address Address#
4. Enter access code Code#
5. Select channel Channel#
6. Enter access limit [Accesses]#
7. Exit add menu #

Deleting a code
Enter the following keystrokes:
1. Enter program mode *Master Code*
2. Select delete menu 2#
3. Enter user address Address#
4. Exit delete menu #
5. Exit program mode #

Changing the relay time (hard-wired model only)
Enter the following keystrokes:
1. Enter program mode *Master Code*
2. Select output menu 3#
3. Enter channel Channel#
4. Enter pulse timeSeconds#
5. Exit output menu #
6. Exit program mode #

Changing the master code
Enter the following keystrokes:
1. Enter program mode *Master Code* 1*
2. Select KwikLearn 0#
3. Enter address 0#
4. Enter a new code Code

1Default master code = 1 2 3 4
Thanks to its incredibly user-friendly design – utilising a simple two-wire bus system – the POLOphone intercom system is known for reliable, hassle-free installation and operation. However, should something go wrong, this diagnostic guide will help you to easily diagnose and resolve any issues that may arise.
Symptom: Lights off on Entry Panel

Possible causes

• Polarity of power supply wires incorrect
• Polarity of two-wire bus incorrect
• Supply voltage too low
• Voltage on two-wire bus too low

Solutions

• Check polarity of power supply wires
• Check polarity of two-wire bus
• Measure supply voltage
• Measure two-wire bus voltage at Entry Panel; it should be between 6.8V and 8V

Symptom: Entry Panel howling when active

Possible cause

• Volume too high at Entry Panel

Solutions

• Reduce volume at Entry Panel
• Make sure that there is a sponge between the Entry Panel speaker and the speaker holder
• Make sure that there is a sponge between the Entry Panel microphone and the Base cover
• Make sure that the unit is properly closed
Symptom: Entry Panel relay not triggering when gate button pressed on Handset

Possible causes

• Incorrect group selected on Entry Panel
• Bus voltage at Entry Panel too low

Solutions

• Ensure that correct group (1 or 2) is selected on Entry Panel
• Measure two-wire bus voltage at Entry Panel; it should be between 6.8V and 8V
• Replace faulty Entry Panel

Symptom: Handset not ringing when called

Possible causes

• Polarity of two-wire bus incorrect
• Voltage on two-wire bus at Handset too low
• Poor connection between Handset and coil cord
• Incorrect Handset group selected
• Cradle not properly placed on the Handset

Solutions

• Check polarity of two-wire bus
• Measure two-wire bus voltage at Handset; it should be between 6.8V and 8V
• Check coil cord connection
• Ensure that correct group (A or B) is selected on Handset
• Ensure that the cradle is properly placed on the Handset and is pressing the Hook switch
Symptom: No speech when Handset is lifted

Possible causes

• Handset volume set too low
• Poor connection between Handset and coil cord
• Hook switch jammed

Solutions

• Increase Handset volume
• Check coil cord connection
• Ensure that hook switch moves freely
WIRING DIAGRAMS

Wiring diagram of the POLOphone intercom system

The image used is for illustrative purposes only.
The actual controller may differ from this image.

WARNING
If the gate trigger wire is connected to a potential-free contact (NO or COM) on the entry panel, the gate can be opened by joining the NO and COM terminals together.
For additional security it is advisable to wire to the auxiliary terminals on the handset or connect the P.O.L.O Switch in the gate.
Diagnostic exercises on the **G-ULTRA** are mostly symptom-based; however, the device’s onboard LEDs will provide useful information about the overall system health, as will the G-WEB online interface.
Symptom: Missed Call not activating one or both of the outputs

Possible causes

• The user phone number has not been added to system memory
• The Caller Line Identification Presentation has not been enabled on user phone number or G-ULTRA SIM
• No network coverage
• The G-ULTRA module is not powered up

Solutions

• Ensure that the user phone number has been successfully added and also check that the command syntax is correct if adding using SMS
• Enable Caller Line Identification Presentation
• Check the signal strength LEDs on the module and move the antenna to obtain optimal network coverage
• Check that the device is powered up

Symptom: When giving the module a Missed Call, Voicemail or a busy tone is heard

Possible causes

• Call forwarding/Voicemail has been enabled
• No network coverage
• The G-ULTRA module is not powered up
• The device is currently engaged in the synchronisation stage

Solutions

• Insert the module SIM card into a mobile phone and disable Call forwarding/Voicemail
• Check the signal strength LEDs on the module and move the antenna to obtain optimal network coverage
Symptom: When giving the module a Missed Call, the relay activates and then the call goes to Voicemail

Possible cause

• Call forwarding/Voicemail has been enabled (Busy)

Solution

• Insert the module SIM card into a mobile phone and disable Call forwarding/Voicemail

Symptom: G-ULTRA not synchronising via G-WEB

Possible causes

• The G-ULTRA module is not powered up
• No network coverage
• No airtime on the module SIM card
• SIM card not registered - Check with local communication authority
• Data service not enabled on the SIM
• Incorrect network specified on the website

Solutions

• Check that the device is powered up
• Check the signal strength LEDs on the module and move the antenna to obtain optimal network coverage
• Load airtime onto the module SIM card
• Have SIM card registered in terms of local regulation in force
• Contact SIM card provider to make sure that the SIM card has data connection enabled
• Make sure that the correct network is specified
GSM Devices Quick Selection Guide

<table>
<thead>
<tr>
<th>Technical Data</th>
<th>G-SPK ULTRA</th>
<th>G-ULTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>11V - 24V DC</td>
<td>11V - 24V DC</td>
</tr>
<tr>
<td>Channels</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IOS 2 Relay Outputs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4 Individually configurable as either Input or Output</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Web and SMS</td>
<td>Web-based</td>
<td>Web-based</td>
</tr>
<tr>
<td>Based on number of uses</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Reacts to: Please Call Me</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reacts to SMS and Missed Call</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Web interface</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of users</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Maximum Current Draw</td>
<td>300mA</td>
<td>100mA</td>
</tr>
<tr>
<td>Airtime query</td>
<td>Yes, via SMS, Web and G-remote</td>
<td>Yes, via SMS, Web and G-remote</td>
</tr>
<tr>
<td>Permitted Access</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
WIRING DIAGRAMS

Wiring diagram of G-ULTRA to D-Series to activate the gate open/close trigger input on the controller via a normally open relay contact

The image used is for illustrative purposes only. The actual controller may differ from this image.

Do not mount close to DOSS sensor or remote receiver.

Trigger - (Pulse)
WIRING DIAGRAMS

Wiring diagram of G-ULTRA to D-Series to monitor the controller diagnostic information

The image used is for illustrative purposes only. The actual controller may differ from this image.

Do not mount close to DOSS sensor or remote receiver.

Gate Status Monitoring

FIGURE 11
WIRING DIAGRAMS

Wiring diagram of G-ULTRA to D-Series to activate the Pedestrian Open input on the controller via a normally open relay contact

The image used is for illustrative purposes only. The actual controller may differ from this image.

FIGURE 12

Do not mount close to DOSS sensor or remote receiver.

Trigger - Pedestrian (Pulse)
Ultra-reliable and whisper-quiet, the SDO4 garage door operator for tip-up and sectional doors is even equipped with a Door Service Monitor that will inform you when it’s time to service your garage door.
PRELIMINARY CHECKS

1. Ensure that the garage door on which the SDO4 is installed is properly balanced and well-functioning. The garage door is deemed to be well-balanced and aligned if it:
 a. Requires an equivalent amount of applied force to either manually open or no more than 150N (15kg) of applied force to either manually open or close
 b. Does not rise or fall more than 100mm when released at any point between fully open or fully closed positions
 c. Does not rub on or incorrectly make contact with any supporting or surrounding structures
 d. The horizontal tracks have been installed level
 e. The door panels have been installed level, and
 f. The vertical tracks have been installed plumb
 g. The junction between the curved horizontal track and the vertical track does not cause the door to ‘jump’

2. If it is a sectional type door, make sure that the counterbalance springs have been properly lubricated between all of the coils with heavy automotive bearing grease.
Symptom: The SDO4 does not function at all

If an error occurs, the courtesy LED will triple flash and an error code will be displayed on the screen.

Possible causes

• Safety beam active (error code: E1)
• Door not properly balanced (error code: E3)
• Run time exceeded (error code: E4)
• The door is too heavy for current door setting (Current Sensor error code: E5)
• Collision detected (error code: E6)
• Not enough power supplied to the operator (error code: E7)
• Drive fault (error code: E8)
• DOSS fault (error code: E9)
• Low battery (error code: Lb)

Solutions

• Align safety beams; check connections; select two-wire or four-wire safety beams using corresponding jumpers
• Check door tension
• Ensure that correct door type has been selected (SE - sectional, tu - tip-up)
• Increase the force offset value. Refer to section 8.3.3.1 in the installation manual
• Check door tension and inspect guide-rails for possible obstructions
• Check batteries and PSU; operator cannot run off PSU alone
• Check fuse, motor connection and drive circuit
• Check DOSS connection on controller
• Ensure that batteries are charged and connected
EXPLANATION OF INFORMATION SCREENS

The following screens can be accessed by using the triangular up and down buttons. The information is very useful when doing fault finding to provide the user with better feedback of the various diagnostic conditions or when acquiring general operational information.

Voltages

- Charger voltage - should be approximately 14V DC for the D5-Evo/D5-Evo Low-Voltage/SECTOR II/V-Series and 27V DC for the D10/D10 Turbo
- Battery voltage - the unit will not operate if the voltage falls more than 3V DC under load. A quick way of checking the battery’s voltage under load is to apply a force in the opposite direction to the movement of the gate; the battery voltage should never drop more than 2V DC. The system will enter Battery-low state at 10V DC (D5-Evo/D5-Evo Low-Voltage/SECTOR II/V-Series) or 21.0V DC (D10/D10 Turbo) and will shut down, allowing the batteries to charge

Speed

- This display indicates the speed at which the gate/SECTOR II is travelling in metres per minute; the speed of the SECTOR II is indicated in degrees per second
- Say, for example, that the gate has been set to run at maximum speed, but this information screen indicates that it is not running at maximum speed, it is an indication that the gate is heavy or it might be time to change the wheels
Current / Collision Count and Lost

• This screen will display the instantaneous current drawn during operation; typically it should be between 6A and 8A for the D5-Evo/D5-Evo Low-Voltage, between 3A and 6A for the D10/D10 Turbo and around 2A for the SECTOR II. Note that the current drawn by the various operators could vary greatly depending on the load. A heavy gate would naturally result in more current being drawn. The maximum current draw is limited to 15A.

• This screen will help determine whether the gate is running properly or not. If the current drawn is much higher than 6A, it could be an indication that the gate weight is excessive or something is obstructing the free movement of the gate. Check for dirt on the rail and ensure that the wheels move freely; the maximum current may be zeroed at any stage by pressing the oblong pushbutton on the controller.

• ColCnt – indicates the number of collisions encountered during a specific cycle. The counter will reset to zero after every successful cycle.

• Lost – if a system encounters six consecutive collisions, it will enter a realignment procedure to try and determine the true positions of its Endstops and Origin Marker.
Position Count

• Open, Close and Current - compares the open/close count in the fully open/closed position with the current count in these positions; it should be within ten counts

• For example, if the gate is in the fully closed position and the Closed Count displays 5, but the Position Count is 16, it indicates a problem. See the point that follows:

• Open, Close and Current - compares the open/close If not, it is safe to assume that the encoder sensor is not counting the pulses accurately or that electrical noise is present around the DOSS system. Equipment such as GSM modules, switch mode chargers or other electrical devices with high electrical noise could contribute to problems in this area

Magnet Position

• The display will indicate the position of the magnet relative to the position of the motor. When the display is contradicting the fact, it is an indication that the magnet polarity is incorrect

PWM

• This is an indication of the percentage of battery power that the controller is able to deliver to the motor. The heavier the gate, the lower this percentage is likely to be. If the system is running at full speed but only 80% of battery power is being delivered to the battery, it might be time to change the gate wheels
Operations/Power ups

- The OPS screen acts as a trip counter and counts and stores the number of operations completed over a period of time.
- For example, the diagnostic screen above indicates that the gate in question has completed 2880 cycles (open and closed) in total.
- P UP – Indicates the total number of times that the controller has had the power cycled (power removed and reapplied). A high number of power-ups on a battery backed-up system indicates a problem with either the battery or the charger.
- Both these counters can be reset by removing the power to the controller, holding in all four buttons and reapplying power.
- PO – Power-on-reset has occurred. This reset condition occurs if the control card is powered up from a completely powered down state, meaning that no power is connected to the control card and the super-cap is completely discharged.
- BO – A Brown-out-reset has occurred. Generally this condition occurs if the voltage to the microprocessor drops below some critical threshold value. The device is held in reset in such situations to prevent abnormal operation. If this flag is set on its own, it’s a good indicator that there may be something wrong with the electrical supply to the operator. The system should be checked by a qualified service technician. During a power-on-reset (see above), the BO flag is always set simultaneously with the PO flag. This is completely normal, and should not cause concern.
- SW – A Software-reset has occurred. This flag is set in the event of abnormal software execution, device failure, or after the system powers up following recovery from Sleep Mode. The device enters sleep when all power is removed from the controller, but the super-cap continues to power the real-time clock circuitry. If the control card is powered up before the super-cap discharges and the time is lost, the system will generate a software reset and set the SW flag.
- WD – A Watchdog-reset has occurred. This flag is set in the event of abnormal software execution, or some form of device failure. The system should be checked by a qualified service technician if the event is flagged repeatedly.
• MC – A Master-Clear-reset has occurred. This flag is set in the event of abnormal software execution, or some form of device failure. The system should be checked by a qualified service technician if the event is flagged repeatedly.

• SL – The device has entered and recovered from Sleep Mode. This flag is infrequently set, as it is cleared during a device reset which usually follows the exit from Sleep Mode. It is not relevant to normal controller operation, and should not be a cause for concern if it does happen to be set.

Drive, Fuse and Motor

- **DRIVE** – This indicates whether all the transistors present in the H-bridge are operational.
- **FUSE** – Fuse in working condition.
- **MOTOR** – Motor is connected.

Example

- The screen pictured above indicates a faulty H-bridge, blown fuse and a motor in an unknown state.

Serial Number and Firmware version

- **M** and **C** – Indicates the software version loaded on the controller.
- **SN** – Serial Number of controller.
- **E** – Displays the EEPROM version number.
• This screen aids in indicating which inputs are active
• RF – This row determines whether any inputs (in this case RF inputs) are being activated by RF functionality. If any cell in this row has an ellipse icon in it, the respective RF input is currently being activated. The activation may arise from a latched remote control transmission, or from a currently active pulsed remote control transmission
• AA – This row determines whether a physical input is being activated by an Auto Activation Time-Period
• Any cell with an ellipse icon in it indicates that the respective input is active due to some currently active Auto Activation Time-period
• TB – This row determines whether a physical input is inhibited from affecting the control card by a time-barring Time-period. Any cell with an ellipse icon in it indicates that the respective physical input is prevented from affecting the controller
• TRG – The trigger input column
• FRX – The free-exit input column
• PED – The pedestrian input column
• LCK – The Holiday Lockout input column
• LIT – The Courtesy Light LIT input column

Example

• The screen picture above shows that an Auto Activation is present for the Free-exit function
Remote Control Information

- **ID No** – Displays the identification number of the last remote used to trigger the system
- **LB** – A black dot will appear in this field if the battery of the remote being activated is nearing the end of its functional life
- **PL** – Will indicate the type of input/output (pulsed or latching)
- **TB** – A dot in this field indicates that the remote is time-barred
- **Button** – Indicates which remote button was used for the last valid trigger
- **1/500** – Indicates the memory usage, i.e. how many buttons have been learned into the controller’s memory
- The field towards the centre of the display will indicate what function the particular remote button has been assigned to activate, i.e. TRG, FRX, LCK, etc.

Example

- The screen pictured above indicates that the last transmitter button to be pressed had the ID number 737 and it was a pulsed input activating the TRG input. Button one of the transmitter was used and only three transmitter buttons out of the possible 500 programmable buttons have been used

SECTOR II Spring tension screen

- This screen indicates how many turns of the spring tensioning nut are needed and which way it should be turned, i.e. clockwise or counter-clockwise
WIZO-LINK WIRING DIAGRAMS

Wiring a G-ULTRA into a D-Series Controller via a WiZo

The image used is for illustrative purposes only. The actual controller may differ from this image.

FIGURE 13
Wiring a G-ULTRA into a Electric Fence Controller via WiZos

The image used is for illustrative purposes only. The actual controller may differ from this image.

FIGURE 14
Wiring a G-ULTRA into an Alarm System via WiZos

The image used is for illustrative purposes only. The actual controller may differ from this image.
Wiring WiZo-Link Solar into a Water Tank

The image used is for illustrative purposes only. The actual controller may differ from this image.
VARIABLES WIRING DIAGRAMS

Wiring diagram for closing safety PE beams

The image used is for illustrative purposes only. The actual controller may differ from this image.

FIGURE 17
Wiring diagram for opening safety PE beams

The image used is for illustrative purposes only. The actual controller may differ from this image.

FIGURE 18
Wiring diagram for various inputs

The image used is for illustrative purposes only.
The actual controller may differ from this image.

FIGURE 19
Wiring diagram for pilar lights

The image used is for illustrative purposes only. The actual controller may differ from this image.

FIGURE 20
Connect with us on

facebook.com/CenturionSystems

YouTube.com/CenturionSystems

Twitter@askCenturion

centurion.systems

Newsletter subscription: www.centsys.com/Subscribe

www.centsys.com.au

Call: 1300 CENTSYS (1300 236 879)

After Hours International Technical Support Call Centre
+27 11 699 2481 (16:00 to 02:00 - Australian Eastern Time)

Physical Address
Block S, Unit 2, 391 Park Road, Regents Park, NSW 2137

The products depicted are for illustrative purposes only. Actual products may differ.

E&OE. Centurion Systems (Pty) Ltd. reserves the right to change any product without prior notice.

All product and brand names in this document that are accompanied by the ® symbol are registered trademarks in South Africa and/or other countries, in favour of Centurion Systems (Pty) Ltd, South Africa. The Centurion Systems logo, all product and brand names in this document that are accompanied by the TM symbol are trademarks of Centurion Systems (Pty) Ltd, in South Africa and other territories; all rights are reserved.

We invite you to contact us for further details.