The NOVA system incorporates code-hopping technology (Keeloq® encryption) to offer the ultimate security in a remote control.

A unique, randomly changing code is transmitted with each operation making it impossible to duplicate the system.

The SMART system uses a unique fixed code transmitted with each operation, making it impossible to duplicate the system.

Whether NOVA or SMART, the receiver is self-learning, making it quick and easy to set up.

For the best results, we recommend that the receiver be mounted as high up as possible, and preferably away from metal objects and other radio equipment.

1. Configuring the System

1. Transmitter

Whatever NOVA or SMART, each transmitter is factory-programmed with a unique, randomly changing code to open the transceiver, except when changing the code. The self-learning memory is capable of memorising up to 62 buttons; the system can be left in autolearn mode for a period of time, and will automatically memorise any incoming signals.

Each valid signal received in this mode will both activate the contact, and be stored in memory.

The system can be left in autolearn mode for a period of time, and will automatically memorise any incoming signals.

Removing the jumper will cancel the erase process.

When using autolearn mode, whether the receiver is NOVA or SMART, any button that has been learned into the system will require a new code.

Removing the jumper will cancel the erase process.

2. NOVA and SMART receiver technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>NOVA</th>
<th>SMART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>433.92 MHz</td>
<td>433.92 MHz</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12 - 24V DC</td>
<td>12 - 24V DC</td>
</tr>
<tr>
<td>Current drain</td>
<td>40mA</td>
<td>11mA</td>
</tr>
<tr>
<td>Quiescent current</td>
<td>11mA</td>
<td>11mA</td>
</tr>
<tr>
<td>Humidity</td>
<td>0 - 90% non-condensing</td>
<td>0 - 90% non-condensing</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-15°C to 50°C</td>
<td>-15°C to 50°C</td>
</tr>
<tr>
<td>Self-learning memory</td>
<td>62 buttons</td>
<td>125 buttons</td>
</tr>
<tr>
<td>Receptor enclosure</td>
<td>UV stabilised ABS</td>
<td>UV stabilised ABS</td>
</tr>
</tbody>
</table>

The NOVA system incorporates code-hopping technology (Keeloq® encryption) to offer the ultimate security in a remote control.

1. Transmitter

Whatever NOVA or SMART, each transmitter is factory-programmed with a unique, randomly changing code to open the transceiver, except when changing the code. The self-learning memory is capable of memorising up to 62 buttons; the system can be left in autolearn mode for a period of time, and will automatically memorise any incoming signals.

Each valid signal received in this mode will both activate the contact, and be stored in memory.

The system can be left in autolearn mode for a period of time, and will automatically memorise any incoming signals.

Removing the jumper will cancel the erase process.

When using autolearn mode, whether the receiver is NOVA or SMART, any button that has been learned into the system will require a new code.

Removing the jumper will cancel the erase process.

2. NOVA and SMART receiver technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>NOVA</th>
<th>SMART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>433.92 MHz</td>
<td>433.92 MHz</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12 - 24V DC</td>
<td>12 - 24V DC</td>
</tr>
<tr>
<td>Current drain</td>
<td>40mA</td>
<td>11mA</td>
</tr>
<tr>
<td>Quiescent current</td>
<td>11mA</td>
<td>11mA</td>
</tr>
<tr>
<td>Humidity</td>
<td>0 - 90% non-condensing</td>
<td>0 - 90% non-condensing</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-15°C to 50°C</td>
<td>-15°C to 50°C</td>
</tr>
<tr>
<td>Self-learning memory</td>
<td>62 buttons</td>
<td>125 buttons</td>
</tr>
<tr>
<td>Receptor enclosure</td>
<td>UV stabilised ABS</td>
<td>UV stabilised ABS</td>
</tr>
</tbody>
</table>

The NOVA system incorporates code-hopping technology (Keeloq® encryption) to offer the ultimate security in a remote control.

1. Transmitter

Whatever NOVA or SMART, each transmitter is factory-programmed with a unique, randomly changing code to open the transceiver, except when changing the code. The self-learning memory is capable of memorising up to 62 buttons; the system can be left in autolearn mode for a period of time, and will automatically memorise any incoming signals.

Each valid signal received in this mode will both activate the contact, and be stored in memory.

The system can be left in autolearn mode for a period of time, and will automatically memorise any incoming signals.

Removing the jumper will cancel the erase process.

When using autolearn mode, whether the receiver is NOVA or SMART, any button that has been learned into the system will require a new code.

Removing the jumper will cancel the erase process.

2. NOVA and SMART receiver technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>NOVA</th>
<th>SMART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>433.92 MHz</td>
<td>433.92 MHz</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12 - 24V DC</td>
<td>12 - 24V DC</td>
</tr>
<tr>
<td>Current drain</td>
<td>40mA</td>
<td>11mA</td>
</tr>
<tr>
<td>Quiescent current</td>
<td>11mA</td>
<td>11mA</td>
</tr>
<tr>
<td>Humidity</td>
<td>0 - 90% non-condensing</td>
<td>0 - 90% non-condensing</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-15°C to 50°C</td>
<td>-15°C to 50°C</td>
</tr>
<tr>
<td>Self-learning memory</td>
<td>62 buttons</td>
<td>125 buttons</td>
</tr>
<tr>
<td>Receptor enclosure</td>
<td>UV stabilised ABS</td>
<td>UV stabilised ABS</td>
</tr>
</tbody>
</table>
FCC information to users
USA and Canada only – where a FCC ID number is inscribed on the receiver, the following information is applicable to users:

FCC Label @ FCC 15.21 and 15.105
For Class B – Unintentional radiators:
This equipment has been tested and found to comply with the limits for Class B digital devices, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications, however, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

Warning to users @ FCC 15.21 & 15.105
Changes or modifications not expressly approved by CENTURION SYSTEMS (Pty) Ltd. could void the user's authority to operate the equipment.

FCC Label @ FCC 15.19
For Class B - Unintentional radiators:
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

Connections
1. Supply the unit with 12-24V AC/DC.
2. The output contact is potential-free.

Special applications may require an external link between NEG and COM.

Replace cover
1. Hold the top edge of the cover to the top of the unit.
2. Lower the cover and press securely into position.

Recover measure
1. Insert screwdriver into slot.
2. Twist screwdriver.
3. Remove cover.

Mount unit
1. Mark position of unit against mounting surface.
2. Using a 5mm masonry bit, drill a hole into mounting surface.
3. Mount unit using the battery supplied.

Wiring
1. Use a drill bit kit to open the required cable entry hole.
2. Route cable into housing.
3. Terminate cable onto receiver - refer to connection diagram below.
4. Fix unit to wall using cable saddles.
5. Feed wire required into area of the spare holes - check slots fully for lead results.
6. Seal cable entry holes with silicone sealant.

Connections
USA and Canada only - where a FCC ID number is inscribed on the receiver, the following information is applicable to users:

FCC Label @ FCC 15.21 and 15.105
For Class B – Unintentional radiators:
This equipment has been tested and found to comply with the limits for Class B digital devices, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications, however, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

Warning to users @ FCC 15.21 & 15.105
Changes or modifications not expressly approved by CENTURION SYSTEMS (Pty) Ltd. could void the user’s authority to operate the equipment.

FCC Label @ FCC 15.19
For Class B - Unintentional radiators:
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) the device must accept any interference received, including interference that may cause undesired operation.

www.centsys.com